Calorimetry for Global Event Characterization in PHENIX

Sebastian White, Brookhaven Nat'l Lab, for the PHENIX collaboration

•PHENIX
$$\frac{dE_t}{d\mathbf{h}}(\mathbf{h} = 0)$$
 vs.participant#

- •EMCal Design and Performance
- •Forward Detectors and Collision Geometry
- •Results

*See also: G.David, A.Milov, A.Denisov and A. Bazilevsky, H.Torii (poster)

Energy Flow in a Heavy Ion Collision

Definitions:

$$\frac{E_{t}^{i}=\sin(\theta^{i})*(E_{kin}^{i}+m^{i})}{(E_{kin}^{i})}$$

 π , K... baryons

N_{participant}:

1)
$$N_{part} + E_{spectator} / (m_n * \gamma_{beam}) = A_{beam}$$

Glauber Model 2)
$$pb'^2 = \int_0^{E_f} \frac{d\mathbf{s}}{dE_f} dE_f$$
, calculate $N_{\text{participant}}$ from b'

Physical Limitations:

- Finite Coverage $(\frac{\mathbf{p}}{4}, |\mathbf{h}| \le 0.38)$ -> E_t fluctuations from acceptance
- Backgrounds, Hadron Response -> net correction of 17%
- Detectable "Spectator" Neutron Fraction ~ {1/2:0}

E_t produced is related to energy density ~
$$\frac{dE_t}{d\mathbf{h}}$$
/Volume

How does it increase from SPS to RHIC?

Naïve extrapolation;

PHENIX-Setup: Side View

Phenix EM Calorimeter Parameters

Pb-scintillator sampling calorimeter (PbSc)

- WLS fiber readout
- 66 layers of Pb 1.5mm + Sc 4mm
- laser monitoring system
- -1 super-module = 12×12 towers
- -1 module = 2x2 towers
- Lead glass calorimeter (PbGl)from WA98
 - LED monitoring system
 - 1 super-module = 4 x 6 towers

	PbSc	PbGl
Size(cm x cm)	5.535 x 5.535	4.0 x 4.0
Depth(cm)	37.5	40
Number of towers	15552	9216
Sampling fraction	~ 20%	100%
h cov.	0. 7	0. 7
f cov.	90+45deg	45deg
h/ mod	0.011	0.008
f/ mod	0.011	0.008
X_0	18	14.4
Molière Radius	~ 3cm	3.68cm

EMCAL LASER CALIBRATION SYSTEM

Production control and precalibration (to 5%)

Energy Scale from beam tests

1GeV e⁻: μ_{Trans} : μ_{long}

=1GeV: 38 MeV: 280 MeV

EMCal Intrinsic Uniformity

Internal timing/light yield uniformity of Calorimeter

- •EM Shower distributed within several modules
- •uniformity of response affects ultimate t and Energy resolution
- •signal(in fiber) and shower velocity partially cancel
- •signal attenuation partially compensates shower depth

Transverse Uniformity

Pb/Sc Linearity, resolution

Stochastic, constant term : ----

$$\frac{\mathbf{s}}{E} \approx \frac{8.2\%}{\sqrt{E(GeV)}} \oplus 1.9\%$$

$$(E_{EMCal} - E_{beam}) / E_{beam}$$

Testbeams at BNL, Cern

$$Linearity = \frac{Eemc - Ebeam}{Ebeam} \%$$

- •Et measurement is corrected for hadron response of the EMCal.
- •On average this is a factor of 0.8.
- •Calorimeter timing in principle a tool for particle id.

Intrinsic Resolution (testbeam)

Response to identified hadrons, RHIC data

Identified protons: EMC energy vs. momentum

antiprotons

EMCal global energy calibration

AGS Test Beam
Au-Au data

Au-Au data

O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E_{EMC} (GeV)

E/p matching for electron enriched sample (with RICH): p>0.5 GeV/c

MIP peak position for 1 GeV/c charged tracks (mostly pions): Within 1% from Test Beam results

p0's $p_t > 2 \text{ GeV, asym} < 0.8$ m=136.7 MeV/c²

Particles contributing to Et

Simulation: geant particle id vs. energy deposit

Simulation & Data: Cluster Energy distribution from $fast(\pi^0,\pi^{+-})$ and slow(baryons) particles

Beam Beam Counter

BBC event Display, t_0 , Zvtx ($\sim \delta t$)

$$\delta_{vertex}(cms)$$
 , $\,\sigma{\sim}2$ cm BBC vs. ZDC

- •Tungsten absorber/ fiber (C)sampling
- •2 Lint/module, 3 modules total
- •C sampling filters shower secondaries
- •Uniform response vs. impact point

Zero Degree Calorimetry: Effective Shower Size Scintillator vs. ZCAl

$Contaiment \equiv Signal(r < R)/Total$

Testbeam Measurements (100 GeV p)

Response uniformity

Directional response

ZDC Energy/Multiplicity Scale: Determination of Participant

Fit to distribution of 1,2.. 65 GeV neutron peaks σ/E~ 25%

ZDC/BBC multiplicaties vs. Centrality determined from cross sections

dE_t/dη and participant dependence

2 ZDC's measure same multiplicity to $\Delta <> \sim 10\%$

Conclusions

- •EMCal energy scale determined to 2%
- •Et/event scale to +/- 4%
- •BBC, ZDC measure global properties of events(z_{vert},t₀,Centrality)
- • $dE_t/d\eta$ increases by ~50% from SPS to RHIC
- •clear departure from linear N_{participant} dependence seen